TDA Progress Report 42-69

March and April 1982

The Development Version Control and
Visibility Subsystem

L. R. Hawley
DSN Data Systems Section

This article describes a prototype Development Version Control and Visibility Subsys-
tem (DVCS). DVCS provides an implementation/management interface serving both the
implementor and management. For management, DVCS monitors the production of
design and source code. DVCS provides the implementor listings annotated with change
bars, detects errors in the block structure of the design and indicates when standards
requiring the use of structured programming constructs in the design of software are
violated. It is operated by the Software Production and Management Control (SPMC)
group of the Deep Space Network at the Jet Propulsion Laboratory in Pasadena, Califor-
nia. The DVCS will be used by the DSN to monitor the implementation of the Network
Consolidation Project, a multiyear project at JPL.

I. Introduction

Modern software production methodologies promote the
idea of an all-inclusive programming environment. Such an
environment provides not only the tools required by pro-
grammers to implement a given software project, but includes
mechanisms to monitor and manage the data base of code and
documentation produced by the implementors. With regard to
these management features of a programming environment,
the DVCS addresses three main areas of current concerns:
(1) monitoring the output of the implementation staff, (2) ad-
herence to standard practices, and (3) the production of high-
quality as-built software specification documentation.

Within the DSN organization is a Software Production and
Management Control (SPMC) group. This group is chartered
to:

(1) Monitor the production of software code and docu-
mentation in terms of quantity (lines of code).

(2) Produce final versions of software documentation
describing implemented code,

(3) Provide management with reports on the status of
software production.

(4) Other activities not directly connected with the DVCS

such as archiving release versions, distribution, etc.

The Development Version Control and Visibility System
(DVCS) is intended to automate, to some extent, items (1)
through (3) above. The remainder of this paper is in four sec-
tions. Section IT enumerates the goals and objectives of the
DVCS. Sections III and IV describe its implementation and

113




current use, Section V provides conclusions and indicates
future plans.

Il. Goals and Objectives

A brief description of the software implementation process
follows; goals and objectives of DVCS are then related to the
functions that occur within the software generation process.
First, a software engineer analyzes a Software Requirements
Document (SRD) and produces a Software Design Document
(SDD) describing the architecture of a software module to
implement the specified functions. After review and approval,
the implementation phase begins. The major deliverables of
the implementation phase are:

(1) The source, object and other (e.g., job control) code
necessary to generate a working system,

(2) A Software Specification Document (SSD) describing
the as-built system. Within the SSD there is a detailed
design section comprised of flowcharts or flowchart
equivalents describing the software. This detailed
design section may compzise roughly 90% of an SSD;
this is clearly an area that can benefit from automation.

(3) Other documentation related to the use, test, and inter-
face to other software.

As major goals, DVCS will benefit the following:

(1) Implementors: DVCS will foster the production of
design prior to coding. A PDL language (flowchart
equivalent) will generate design and derived documen-
tation (e.g., variable cross reference) useful in the
implementation process.

(2) SPMC: DVCS will extract PDL pseudocode from files
containing both PDL and assembler/compiler state-
ments and automate the production of design docu-
mentation, DVCS will measure the progress of an
implementation by monitoring and reporting lines
of code, lines of PDL, changed lines, etc. In addition,
DVCS will verify that the design conforms to DSN
standards for operational software.

(3) Management: DVCS provides a means of measuring the
progress of a project. Automation of the measuring
process ensures that management receives timely infor-
mation (as supplied by SPMC, which does the measur-
ing and reporting of a project’s progress).

(4) End-Users: End use functions consist mainly of opera-
tions, sustaining and maintenance. These users should
receive indirect benefits resulting from the consistent
and orderly production of software code and documen-
tation. The sustaining and maintenance functions

114

derive the same direct benefits useful to the implemen-
tors when making changes to a software module, The
database of code and documentation generated in the
implementation phase is available to the software per-
sonnel involved with the sustaining and maintenance
functions.

A major goal in the implementation of DVCS is to make a
tool that is easily operable by SPMC personnel and will not
require the use of a skilled programmer for its operation. The
DVCS should be adaptable to different situations and flexible
in its use. Lastly, it was desired to code the DVCS in the
HAL/S programming language to gain experience using the
DSN’s standard real-time high level language.

lll. Implementation

The implementation of the DVCS software utilizes design
techniques to maximize the functionality of the component

~parts while reducing the interfaces between modules to a

minimum, Essentially, this consists of separating the require-
ments for DVCS into modules that do one function com-
pletely, and nothing else. The data interfaces between modules
are then checked for simplicity. The design is iterated until an
acceptable level of module functionality and simplicity of
module interfaces is achieved. The use of “bubble charts”
allows the designer to describe a program as a set of functions
(inside circles known as “bubbles”) interconnected by lines
representing data interfaces, Figure 1 shows a high level
“bubble chart” for the DVCS. In concept the “bubbles” are
separate tasks that may operate in parallel in a multi-tasking
operating system. In practice, such a scheme is practical only
if some form of pipelining is available to implement the data
interface; that is, the output of one task is the input to the
next task. The concept of “pipelining” can be visualized as a
mechanism by which data flows through a pipe from one
task to another. Unfortunately DVCS was not implemented
on a computer that provided pipelining; it is, however, a useful
conceptual tool. In place of a “pipeline” the current DVCS
utilizes intermediate files.

In order to achieve maximum flexibility, DVCS is designed
as a set of separate functions that may be combined in a
desired order by the job control language that initiates execu-
tion of tasks on the computer. The major functions incorpo-
rated into the current prototype version of DVCS are:

(1) Initialize DVCS: This function creates an empty file
for the summary data produced by DVCS78.

(2) DVCS78: This is the main function provided. It inputs
the current and previous versions of a specified mod-
ule’s source code and outputs (1) a summary of the
module including lines of code, lines of comments and



lines of PDL statements, (2) a listing of the input
source annotated with *“!” characters to indicate
changes from one version to another, (3) PDL state-
ments for a function that validates the design adheres
to standards, and (4) writes extracted PDL statements
onto a file consisting solely of PDL statements for
processing by a PDL processor (a commercial product).

(3) Summarize Statistics: This function creates a totals
summary of all module statistics that have been written
to the summary file by DVCS78. Its output is a listing
used by SPMC to report weekly progress.

(4) Validate Design: This function inputs PDL statements
and checks that the design does not violate standard
structured programming constructs. In addition, this
function checks for errors in the block structure of
the design. The output of this function is a Design
Structure Analysis listing of violations of design
structure standards. Typical design errors detected
are the use of GOTO statements, loop exits from the
middle of a loop, IFs without ENDIFs, and DOs with-
out ENDs. Currently there is only one Validate Design
module; in the future there may be other validation
modules for other PDL languages.

IV. Current Usage

The prototype DVCS has recently been released for use by
SPMC for a three-month evaluation period. Currently, SPMC
personnel are being trained in the use of DVCS and specifica-
tion of the job control statements required to initiate execu-
tion of DVCS. Eventually, the production version of DVCS
will be utilized by the DSN in the implementation of the Net-

work Consolidation Project (NCP), a multiyear project cur-

rently in the design stage at JPL.

It was previously mentioned that DVCS is coded in HAL/S,
the DSN’s standard high-level real-time language. There was
some risk involved in selecting HAL/S since the DVCS is not a
real-time application and the needs of real-time programs are
significantly different from a “businesslike” program such as

DVCS. On the positive side, the execution speed of DVCS is
extremely fast. This was to be expected since the HAL/S com-
piler must produce highly optimized code for real-time pro-
grams, Other features of HAL/S that benefited the design
process were (1) the standard structured programming con-
structs are implemented as primitives of the language,
(2) HAL/S provides useful data structures such as strings,
records, etc., (3) variable cross reference and other informa-
tion derived from the source listing, (4) formatted “pretty
printed” listings using indentation to indicate levels of nesting
of conditional and iterative structured programming con-
structs. On the negative side, HAL/S does not provide for file
I/O as primitives of the language (the programmer must imple-
ment code to open, read, write, position and close a file).
Taken as a whole, HAL/S was significantly superior to the
alternative languages normally available on the Modcomp
computer (assembly and FORTRAN 1V).

V. Conclusions

As indicated in Section I, the DVCS is one comporent of a
total programming environment serving the needs of the imple-
mentors, management staff, and subsequent operations. DVCS
is, in many ways, an implementation/management interface,
It monitors the production of design and source code for
reporting to management. DVCS also provides the implemen-
tor with listings annotated with change bars, detects errors in
the block structure of the design and indicates when DSN
standards require the use of structured programming con-
structs in the desigh of software. Future plans involve making
the prototype into a production version and including addi-
tional functions to:

(1) Produce a magnetic tape to interface with a high-speed
laser printer on another computer.,

(2) Generate a change page listing indicating which pages
of PDL listings changed (as a result of changes to the
PDL).

(3) Additional functions determined desirable in the cur-
rent evaluation phase.

References

1. Constantine, L, and Yourdon, E., Structured Design, Yourdon Press, New York, 1975.

2. Stenning, V., Froggatt, T., Gilbert, R., and Thomas, E., “The Ada Programming Envi-
ronment: A Perspective,” Computer Magazine, June 1981.

3. Kernighan, B., and Masinter, L, “The Unix Programming Environment,” Computer

Magazine, April 1981.

115




116

ANNOTATED SOURCE SOURCE

LISTING
STATEMENT - STING,

CHANGE
BARS

PREVIOUS
" VERSION
£
FILE MODULE
STATISTICS :
RECORD SUMMARIZE PROGRAM
STATISTICS STATISTICS
LINES OF
CURRENT
SOURCE CODE
VERSION PDL LINES OF
FILE STATEMENT COMMENTS
LINES OF
POL
DESIGN
vl STRUCTURE
ANALYSIS
PDLSTATEMENT oo\ e

Fig. 1. DVCS bubble chart




